Section 1.5: Parametric Equation of a Line in \mathbb{R}^n

• Given a vector $\vec{\mathbf{v}} \in \mathbb{R}^n$ and a point $\vec{\mathbf{x}}_0 \in \mathbb{R}^n$, the parametric equation of the line passing through $\vec{\mathbf{x}}_0$ parallel to $\vec{\mathbf{v}}$ is

$$L(t) = \vec{\mathbf{v}}t + \vec{\mathbf{x}}_0.$$

• Example: Find a parametric equation for the line in \mathbb{R}^3 containing the points (1, 3, -7) and (2, -5, 1).

The slope vector is obtained by subtracting the coordinates of the points: $\vec{\mathbf{v}} = \langle 1, -8, 8 \rangle$. The parametric equation is therefore

$$L(t) = \langle 1, -8, 8 \rangle t + \langle 1, 3, -7 \rangle.$$

This can also be written as

$$L(t) = \langle t+1, -8t+3, 8t-7 \rangle,$$

or as a system of parametric equations:

$$x = t + 1$$
, $y = -8t + 3$, $z = 8t - 7$.

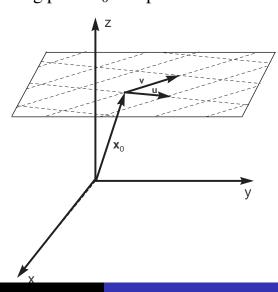
Parametric Equation of a Plane in \mathbb{R}^3

• Given two vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ such that neither \vec{u} nor \vec{v} is a scalar multiple of the other, the set

$$P(s,t) = \vec{\mathbf{u}}s + \vec{\mathbf{v}}t + \vec{\mathbf{x}}_0$$

is a

plane in \mathbb{R}^3 containing point $\vec{\mathbf{x}}_0$ and parallel to the vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.



Equations Related to Normal Vectors

- Given a nonzero vector $\vec{\mathbf{n}}$ in \mathbb{R}^2 or \mathbb{R}^3 , think about the set of all vectors emanating from a point $\vec{\mathbf{x}}_0$ that are perpendicular to $\vec{\mathbf{n}}$.
- The set of all such vectors forms a line through $\vec{\mathbf{x}}_0$ in \mathbb{R}^2 , or a plane through $\vec{\mathbf{x}}_0$ in \mathbb{R}^3 .
- The equation defining the set of all such vectors is

$$\vec{\mathbf{n}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0) = 0.$$

- In \mathbb{R}^2 , this shows that Ax + By = C defines a line with normal vector $\langle A, B \rangle$.
- In \mathbb{R}^3 , this shows that Ax + By + Cz = D defines a plane with normal vector $\langle A, B, C \rangle$.